1. Faults occur in a roll of material at a rate of λ per m^{2}. To estimate λ, three pieces of material of sizes $3 \mathrm{~m}^{2}, 7 \mathrm{~m}^{2}$ and $10 \mathrm{~m}^{2}$ are selected and the number of faults X_{1}, X_{2} and X_{3} respectively are recorded.

The estimator $\hat{\lambda}$, where

$$
\hat{\lambda}=k\left(X_{1}+X_{2}+X_{3}\right)
$$

is an unbiased estimator of λ.
(a) Write down the distributions of X_{1}, X_{2} and X_{3} and find the value of k.
(b) Find $\operatorname{Var}(\hat{\lambda})$.

A random sample of n pieces of this material, each of size $4 \mathrm{~m}^{2}$, was taken. The number of faults on each piece, Y, was recorded.
(c) Show that $\frac{1}{4} \bar{Y}$ is an unbiased estimator of λ.
(d) Find $\operatorname{Var}\left(\frac{1}{4} \bar{Y}\right)$.
(e) Find the minimum value of n for which $\frac{1}{4} \bar{Y}$ becomes a better estimator of λ than $\hat{\lambda}$.
2. A continuous uniform distribution on the interval $[0, k]$ has mean $\frac{k}{2}$ and variance $\frac{k^{2}}{12}$. A random sample of three independent variables X_{1}, X_{2} and X_{3} is taken from this distribution.
(a) Show that $\frac{2}{3} X_{1}+\frac{1}{2} X_{2}+\frac{5}{6} X_{3}$ is an unbiased estimator for k.

An unbiased estimator for k is given by $\hat{k}=a X_{1}+b X_{2}$ where a and b are constants.
(b) Show that $\operatorname{Var}(\hat{k})=\left(a^{2}-2 a+2\right) \frac{k^{2}}{6}$
(c) Hence determine the value of a and the value of b for which \hat{k} has minimum variance, and calculate this minimum variance.
3. A random sample $X_{1}, X_{2}, \ldots, X_{10}$ is taken from a population with mean μ and variance σ^{2}.
(a) Determine the bias, if any, of each of the following estimators of μ.

$$
\begin{align*}
& \theta_{1}=\frac{X_{3}+X_{4}+X_{5}}{3}, \\
& \theta_{2}=\frac{X_{10}-X_{1}}{3} \\
& \theta_{3}=\frac{3 X_{1}+2 X_{2}+X_{10}}{6} \tag{4}
\end{align*}
$$

(b) Find the variance of each of these estimators.
(c) State, giving reasons, which of these three estimators for μ is
(i) the best estimator,
(ii) the worst estimator.
4. The value of orders, in $£$, made to a firm over the internet has distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$. A random sample of n orders is taken and \bar{X} denotes the sample mean.
(a) Write down the mean and variance of \bar{X} in terms of μ and σ^{2}.

A second sample of m orders is taken and \bar{Y} denotes the mean of this sample. An estimator of the population mean is given by

$$
U=\frac{n \bar{X}+m \bar{Y}}{n+m} .
$$

(b) Show that U is an unbiased estimator for μ.
(c) Show that the variance of U is $\frac{\sigma^{2}}{n+m}$.
(d) State which of \bar{X} or U is a better estimator for μ. Give a reason for your answer.
5.

The figure above shows a square of side t and area t^{2} which lies in the first quadrant with one vertex at the origin. A point P with coordinates (X, Y) is selected at random inside the square and the coordinates are used to estimate t^{2}. It is assumed that X and Y are independent random variables each having a continuous uniform distribution over the interval $[0, t]$.
[You may assume that $\mathrm{E}\left(X^{n} Y^{n}\right)=\mathrm{E}\left(X^{n}\right) \mathrm{E}\left(Y^{n}\right)$, where n is a positive integer]
(a) Use integration to show that $\mathrm{E}\left(X^{n}\right)=\frac{t^{n}}{n+1}$.

The random variable $S=k X Y$, where k is a constant, is an unbiased estimator for t^{2}.
(b) Find the value of k.
(c) Show that $\operatorname{Var}(S)=\frac{7 t^{4}}{9}$.

The random variable $U=q\left(X^{2}+Y^{2}\right)$, where q is a constant, is also an unbiased estimator for t^{2}.
(d) Show that the value of $q=\frac{3}{2}$.
(e) Find $\operatorname{Var}(U)$.
(f) State, giving a reason, which of S and U is the better estimator of t^{2}.

The point $(2,3)$ is selected from inside the square.
(g) Use the estimator chosen in part (f) to find an estimate for the area of the square
6. A diabetic patient records her blood glucose readings in $\mathrm{mmol} / \mathrm{l}$ at random times of day over several days. Her readings are given below

$$
\begin{array}{lllllll}
5.3 & 5.7 & 8.4 & 8.7 & 6.3 & 8.0 & 7.2
\end{array}
$$

Assuming that the blood glucose readings are normally distributed calculate
(a) an unbiased estimate for the variance σ^{2} of the blood glucose readings,
(b) a 90% confidence interval for the variance σ^{2} of blood glucose readings.
(c) State whether or not the confidence interval supports the assertion that $\sigma=0.9$.

Give a reason for your answer.
7. A population has mean μ and variance σ^{2}.

A random sample of size 3 is to be taken from this population and \bar{X} denotes its sample mean. A second random sample of size 4 is to be taken from this population and \bar{Y} denotes its sample mean.
(a) Show that unbiased estimators for μ are given by
(i) $\hat{\mu}_{1}=\frac{1}{3} \bar{X}+\frac{2}{3} \bar{Y}$,
(ii) $\quad \hat{\mu}_{2}=\frac{5 \bar{X}+4 \bar{Y}}{9}$
(b) Calculate Var $\left(\hat{\mu}_{1}\right)$
(c) Given that Var $\left(\hat{\mu}_{2}\right)=\frac{37}{243} \sigma^{2}$, state, giving a reason, which of these two estimators should be used.
8. A bag contains marbles of which an unknown proportion p is red. A random sample of n marbles is drawn, with replacement, from the bag. The number X of red marbles drawn is noted.

A second random sample of m marbles is drawn, with replacement. The number Y of red marbles drawn is noted.

Given that $p_{1}=\frac{a X}{n}+\frac{b Y}{m}$ is an unbiased estimator of p,
(a) show that $a+b=1$.

Given that $p_{2}=\frac{(X+Y)}{n+m}$,
(b) show that p_{2} is an unbiased estimator for p.
(c) Show that the variance of p_{1} is $p(1-p)\left(\frac{a^{2}}{n}+\frac{b^{2}}{m}\right)$.
(d) Find the variance of p_{2}.
(e) Given that $a=0.4, m=10$ and $n=20$, explain which estimator p_{1} or p_{2} you should use.
9. (a) Explain briefly what you understand by
(i) an unbiased estimator,
(ii) a consistent estimator.
of an unknown population parameter θ.

From a binomial population, in which the proportion of successes is $p, 3$ samples of size n are taken. The number of successes X_{1}, X_{2}, and X_{3} are recorded and used to estimate p.
(b) Determine the bias, if any, of each of the following estimators of p.

$$
\begin{align*}
& \hat{p}_{1}=\frac{X_{1}+X_{2}+X_{3}}{3 n}, \\
& \hat{p}_{2}=\frac{X_{1}+3 X_{2}+X_{3}}{6 n}, \\
& \hat{p}_{3}=\frac{2 X_{1}+3 X_{2}+X_{3}}{6 n} . \tag{4}
\end{align*}
$$

(c) Find the variance of each of these estimators.
(d) State, giving a reason, which of the three estimators for p is
(i) the best estimator,
(ii) the worst estimator.
10. A random sample of three independent variables X_{1}, X_{2} and X_{3} is taken from a distribution with mean μ and variance σ^{2}.
(a) Show that $\frac{2}{3} X_{1}-\frac{1}{2} X_{2}+\frac{5}{6} X_{3}$ is an unbiased estimator for μ.

An unbiased estimator for μ is given by $\hat{\mu}=a X_{1}+b X_{2}$ where a and b are constants.
(b) Show that $\operatorname{Var}(\hat{\mu})=\left(2 a^{2}-2 a+1\right) \sigma^{2}$.
(c) Hence determine the value of a and the value of b for which $\hat{\mu}$ has minimum variance.

1. (a) $X_{1} \sim \operatorname{Po}(3 \lambda)$

$$
\begin{aligned}
X_{2} & \sim \operatorname{Po}(7 \lambda) \\
X_{3} & \sim \operatorname{Po}(10 \lambda) \\
\mathrm{E}(\hat{\lambda}) & =k\left[\mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{2}\right)+\mathrm{E}\left(X_{3}\right)\right] \\
& =20 \lambda k
\end{aligned}
$$

$\hat{\lambda}$ unbiased therefore $20 \lambda k=\lambda$

$$
k=\frac{1}{20}
$$

Note

M1 all 3 needed. Poisson and mean
M1 adding their means
M1 putting their $\mathrm{E}(\hat{\lambda})=\lambda$
A1 cao
(b) $\operatorname{Var}(\hat{\lambda})=\frac{1}{20^{2}} \operatorname{Var}\left(X_{1}+X_{2}+X_{3}\right)$

$$
\begin{aligned}
& =\frac{1}{20^{2}}(3 \lambda+7 \lambda+10 \lambda) \\
& =\frac{\lambda}{20}
\end{aligned}
$$

Note

M1 use of $k^{2} \operatorname{Var}\left(X_{1}+X_{2}+X_{3}\right)$
M1 using their means from part(a) as Variances and adding together A1 cao
(c) $\quad Y \sim \operatorname{Po}(4 \lambda)$

$$
\mathrm{E}\left(\frac{1}{4} \bar{Y}\right)=\frac{1}{4} \times 4 \lambda=\lambda \text { therefore unbiased }
$$

Note

M1 use of 4
A1 cso plus conclusion. Accept working out bias to $=0$
(d) $\operatorname{Var}\left(\frac{1}{4} \bar{Y}\right)=\frac{1}{16} \times \frac{4 \lambda}{n}$

$$
=\frac{\lambda}{4 n}
$$

Note

M1 $\frac{1}{16} \times \operatorname{Var} \bar{Y}$
B1 for $\operatorname{Var} \bar{Y}=\frac{4 \lambda}{n}$
A1 cao
(e) $\begin{aligned} & \frac{\lambda}{4 n}<\frac{\lambda}{20} \\ & n>5 \text { therefore } n=6 \\ & \text { Note } \\ & \text { M1 for } \operatorname{Var}\left(\frac{1}{4} \bar{Y}\right)>\operatorname{Var}(\hat{\lambda})\end{aligned}$

A1 n $=6$
2. (a) $\mathrm{E}\left(\frac{2}{3} X_{1}+\frac{1}{2} X_{2}+\frac{5}{6} X_{3}\right)=\frac{2}{3} \times \frac{k}{2}+\frac{1}{2} \times \frac{k}{2}+\frac{5}{6} \times \frac{k}{2}=k$
$\mathrm{E}\left(X_{1}+X_{2}+X_{3}\right)=\mathrm{k} \Rightarrow$ unbiased
B1 3
(b) $\mathrm{E}\left(a X_{1}+b X_{2}\right)=a \frac{k}{2}+b \frac{k}{2}=k$
$a+b=2$
A1
$\operatorname{Var}\left(a X_{1}+b X_{2}\right)=a^{2} \frac{k^{2}}{12}+b^{2} \frac{k^{2}}{12}$
$=a^{2} \frac{k^{2}}{12}+(2-a)^{2} \frac{k^{2}}{12}$
$=\left(2 a^{2}-4 a+4\right) \frac{k^{2}}{12}$
$=\left(2 a^{2}-2 a+4\right) \frac{k^{2}}{6}$
$\left(^{*}\right)$ since answer given
A1 cso 6
(c) Min value when $(2 a-2) \frac{k^{2}}{6}=0$
$\frac{\mathrm{d}}{\mathrm{da}}(\mathrm{Var})=0$, all correct, condone missing $\frac{k^{2}}{6} \quad$ M1A1
$\Rightarrow 2 a-2=0$
$A=1, b=1$.
$\frac{\mathrm{d}^{2}(\mathrm{Var})}{\mathrm{da}^{2}}=\frac{2 k^{2}}{6>0}$ since $k^{2}>0$ therefore it is a minimum
min variance $=(1-2+2) \frac{k^{2}}{6}$
$={ }_{6}^{k^{2}}$
B1
6

Alternative

$$
\begin{array}{ll}
\frac{k^{2}}{6}(a-1)^{2}-\frac{k^{2}}{6}+\frac{2 k^{2}}{6} & \text { M1 A1 } \\
\frac{k^{2}}{6}(a-1)^{2}+\frac{k^{2}}{6} & \text { M1 }
\end{array}
$$

Min when $\frac{k^{2}}{6}(a-1)^{2}=0$
$a=1 b=1$
$\min \operatorname{var}=k^{2} / 6$
3. (a) $\mathrm{E}\left(\theta_{1}\right)=\frac{\mathrm{E}\left(X_{3}\right)+\mathrm{E}\left(X_{4}\right)+\mathrm{E}\left(X_{5}\right)}{3}$
$=\frac{3 \mu}{3}$
$\begin{array}{lll}=\mu & \text { Bias }=0 & \text { allow unbiased }\end{array} \quad$ B1
$\mathrm{E}\left(\theta_{2}\right)=\frac{\mathrm{E}\left(X_{10}\right)-\mathrm{E}\left(X_{1}\right)}{3}$
$=1 / 3$
$=0 \quad$ Bias $=-\mu$
allow $\pm \mu \quad$ B1, B1
$\mathrm{E}\left(\theta_{3}\right)=\frac{3 \mathrm{E}\left(X_{1}\right)+2 \mathrm{E}\left(X_{2}\right)+\mathrm{E}\left(X_{10}\right)}{6}$
$=\frac{3 \mu+2 \mu+\mu}{6}$
$\begin{array}{lllll}=\mu & \text { Bias }=0 & \text { allow unbiased } & \text { B1 } 4\end{array}$
(b) $\operatorname{Var}\left(\theta_{1}\right)=\frac{1}{9}\left\{\left(\operatorname{Var} X_{2}\right)+\operatorname{Var}\left(X_{3}\right)+\operatorname{Var}\left(X_{4}\right)\right\}$
$=\frac{1}{9}\left\{\sigma^{2}+\sigma^{2}+\sigma^{2}\right\}$
$=\frac{1}{3} \sigma^{2}$
$\operatorname{Var}\left(\theta_{2}\right)=\frac{2}{9} \sigma^{2}$
B1
$\operatorname{Var}\left(\theta_{3}\right)=\frac{1}{36}\left\{9 \sigma^{2}+4 \sigma^{2}+\sigma^{2}\right\}$
$=\frac{7}{18} \sigma^{2}$
A1 5
(c) (i) θ_{1} is the better estimator. It has a lower var. and no bias

B1depB1
(ii) θ_{2} is the worst estimator. It is biased \quad B1depB1 4
[13]
4. (a) $\mathrm{E}(\bar{X})=\mu$
$\operatorname{Var}(\bar{X})=\operatorname{Var}\left(\frac{X_{1}+X_{2}+X_{3}+\ldots+X_{n}}{n}\right)$
$=\frac{\sigma^{2}}{n}$
B1 2
(b) $\quad \mathrm{E}(U)=\frac{1}{n+m}(n \mathrm{E}(\bar{X})+m \mathrm{E}(\bar{Y}))$
$=\frac{1}{n+m}(n \mu+m \mu)$ A1
$=\mu \Rightarrow U$ is unbiased
state unbiased A1
(c) $\quad \operatorname{Var}(\bar{Y})=\frac{\sigma^{2}}{m}$ B1
$\operatorname{Var}(U)=\frac{n^{2} \operatorname{Var}(\bar{X})+m^{2} \operatorname{Var}(\bar{Y})}{(n+m)^{2}}$ M1

$$
=\frac{n^{2} \frac{\sigma^{2}}{n}+m^{2} \frac{\sigma^{2}}{m}}{(n+m)^{2}}
$$

$$
=\frac{n \sigma^{2}+m \sigma^{2}}{(n+m)^{2}}
$$

$$
=\frac{\sigma^{2}}{n+m} *
$$

(d) $\frac{n \bar{X}+m \bar{Y}}{n+m}$ is a better estimate since variance is smaller B1B1 2
5. (a) $\int x^{n} \frac{1}{t}$
$\int_{0}^{t} d x$
$\mathrm{E}\left(x^{n}\right)=\int_{0}^{t} x^{n} \frac{1}{t} d x=\left[\frac{x^{n+1}}{t(n+1)}\right]_{0}^{t}=\left(\frac{t^{n+1}}{t(n+1)}-0\right) \frac{t^{n}}{n+1}$
A1c.s.o. 3
(b) $\quad\left(\mathrm{E}(x)=\frac{t}{2}\right) \quad \mathrm{E}(s)=k \mathrm{E}(x) \mathrm{E}(y), \quad k \cdot \frac{t^{2}}{4}$
$\mathrm{E}(s)=t^{2} \quad \Rightarrow k=4$
A1 3
(c) $\quad \operatorname{Var}(x y)=\mathrm{E}\left(x^{2}\right) \mathrm{E}\left(y^{2}\right)-[\mathrm{E}(x y)]^{2}$

$$
\begin{aligned}
& =\frac{t^{2}}{3} \times \frac{t^{2}}{3}-\left(\frac{t^{2}}{4}\right)^{2}=\left\{\frac{7 t^{4}}{144}\right\} \\
& \operatorname{Var}(s)=k^{2} \operatorname{var}(x y)=16 \times \frac{7 t^{4}}{144}=\frac{7 t^{4}}{9}
\end{aligned}
$$

M1

A1 c.s.o. 3
(d) $\mathrm{E}(u)=t^{2} \Rightarrow 2 \mathrm{E}\left(x^{2}\right) q=t^{2}, \quad \Rightarrow \frac{2 t^{2}}{8} q=t^{2}, \quad \Rightarrow q=\frac{3}{2}$
(e) $\operatorname{Var}(u)=q^{2}\left[\operatorname{var}\left(x^{2}\right)+\operatorname{var}\left(y^{2}\right)\right]=2 q^{2} \operatorname{var}\left(x^{2}\right)$

$$
\begin{aligned}
& \operatorname{Var}\left(x^{2}\right)=\mathrm{E}(x 4)-\left[\mathrm{E}\left(x^{2}\right)\right]^{2}=\frac{t^{4}}{5}-\left(\frac{t^{2}}{3}\right)^{2}=\left(\frac{4}{45} t^{4}\right) \\
& \operatorname{Var}(u)=2 \times \frac{9}{4} \times \frac{4}{45} t^{4}=\frac{2}{5} t^{4}
\end{aligned}
$$

(f) $\frac{2}{5}<\frac{7}{9} \quad \therefore u$ is better $\quad \because$ smaller variance B1ft 1
(g) Using u estimate is $\frac{3}{2}\left(2^{2}+3^{2}\right)=\frac{3}{2} \times 13=\frac{39}{2}$ or 19.5
6. (a) $\quad \Sigma x=49.6 ; \quad \Sigma x^{2}=362.36$

$$
s^{2}=\frac{1}{6}\left(362.36-\frac{49.6^{2}}{7}\right)=1.8180952 \ldots \quad \text { awrt } 1.82 \quad \text { M1 A1 } 2
$$

(b) $\mathrm{CI}=\left(\frac{6 \times 1.818 . .}{12.592}, \frac{6 \times 1.818 . .}{1.635}\right)$
(c) $0.9^{2}<0.866$, interval does not support $\sigma=0.9$ as out of range.

B1 1
7. (a)
(i) $\mathrm{E}\left(\frac{1}{3} \bar{X}+\frac{2}{3} \bar{Y}\right)=\frac{1}{3} \mathrm{E}\left(\frac{X_{1}+X_{2}+X_{3}}{3}\right)+\frac{2}{3} E\left(\frac{Y_{1}+Y_{2}+Y_{3}+Y_{4}}{4}\right)$
M1
$=\frac{1}{3} \mu+\frac{2}{3} \mu$
$=\mu$ therefore unbiased estimator
A1 2
(ii) $\mathrm{E}\left(\frac{5 \bar{X}+4 \bar{Y}}{9}\right)=\frac{1}{9}(5 E(\bar{X})+4 E(\bar{Y}))$

$$
\begin{aligned}
= & \frac{1}{9}(5 \mu+4 \mu) \\
& =\mu \text { therefore unbiased estimator }
\end{aligned}
$$

(b) $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{3}, \operatorname{Var}(\bar{Y})=\frac{\sigma^{2}}{4}$
$\operatorname{Var}\left(\hat{\mu}_{1}\right)=\frac{1}{9} \cdot \frac{\sigma^{2}}{3}+\frac{4}{9} \cdot \frac{\sigma^{2}}{4}=\frac{4 \sigma^{2}}{27}$
M1 A1 2
(c) $\frac{4}{27} \sigma^{2}<\frac{37}{243} \sigma^{2}$ so use $\hat{\mu}_{1}$.

B1 1
8. (a) $\mathrm{E}(X)=n p, \mathrm{E}(Y)=m p$

B1
both; can be implied

$$
\begin{align*}
& \mathrm{E}\left(p_{1}\right)=\frac{a E(X)}{n}+\frac{b E(Y)}{m}=p ; \Rightarrow \frac{a n p}{n}+\frac{b m p}{m}=p \\
& \Rightarrow(a+b)=1
\end{align*}
$$

A1 4
(b) $\mathrm{E}\left(p_{2}\right)=\frac{1}{n+m}\{\mathrm{E}(X)+\mathrm{E}(Y)\}$

$$
\begin{aligned}
& =\frac{1}{n+m}\{n p+m p\} \\
& =\frac{1}{n+m} \cdot p(n+m)=p \Rightarrow p_{2} \text { is unbiased }
\end{aligned}
$$

(c) $\operatorname{Var}(X)=n p(1-p) ; \operatorname{Var}(Y)=m p(1-p)$

B1
both; can be implied
$\operatorname{Var}\left(p_{1}\right)=\frac{a^{2} \operatorname{Var}(X)}{n^{2}}+\frac{b^{2} \operatorname{Var}(Y)}{m^{2}}$
Use of $\operatorname{Var}(a x)=a^{2} \operatorname{Var}(x)$
$=\frac{a^{2} n p(1-p)}{n^{2}}+\frac{b^{2} m p(1-p)}{m^{2}}$
$=p(1-p)\left\{\frac{a^{2}}{n}+\frac{b^{2}}{m}\right\}$
A1 3
(d) $\operatorname{Var}\left(p_{2}\right)=\frac{1}{(n+m)^{2}}\{n p(1-p)+m p(1-p)\}$

$$
\begin{equation*}
=\frac{p(1-p)}{n+m} \tag{A1 3}
\end{equation*}
$$

(e) $\operatorname{Var}\left(p_{1}\right)=0.044 p(1-p) ; \operatorname{Var}\left(p_{2}\right)=0.0333 \dot{3} p(1-p)$

Use $\operatorname{Var}\left(p_{2}\right)<\operatorname{Var}\left(p_{1}\right) ; p_{2}$
B1; B1
depB1; B1 4
9. (a) (i) $\mathrm{E}(\hat{\theta})=\theta$ B1
(ii) $\mathrm{E}(\hat{\theta})=\theta$ or $\mathrm{E}(\hat{\theta}) \rightarrow \theta \quad$ B1 and $\operatorname{Var}(\hat{\theta}) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ where n is the sample size
(b) $\mathrm{E}\left(\hat{p}_{1}\right)=p, \therefore$ Bias $=0$ B1

$$
\mathrm{E}\left(\hat{p}_{2}\right)=\frac{5 p}{6}, \therefore \text { Bias }= \pm \frac{1}{6} p
$$

B1 B1

$$
\mathrm{E}\left(\hat{p}_{3}\right)=p, \therefore \text { Bias }=0
$$

(c) $\operatorname{Var}\left(\hat{p}_{1}\right)=\frac{1}{9 n^{2}}\{n p q+n p q+n p q\}$

$$
\begin{align*}
& =\frac{p q}{3 n} \tag{A1}\\
\operatorname{Var}\left(\hat{p}_{2}\right) & =\frac{\frac{11 p q}{36 n}}{\operatorname{Var}\left(\hat{p}_{3}\right)=\frac{7 p q}{18 n}}
\end{align*}
$$

A1 A1 4
(d) (i) $\quad \hat{p}_{1}$; unbiased and smallest variance

B1 dep; B1
(ii) $\quad \hat{p}_{2}$; biased

B1 dep; B1 4
[15]
10. (a) $\mathrm{E}\left(\frac{2}{3} X_{1}-\frac{1}{2} X_{2}+\frac{5}{6} X_{3}\right)=\frac{2}{3} \mu-\frac{1}{2} \mu+\frac{5}{6} \mu=\mu$ $\mathrm{E}(Y)=\mu \Rightarrow$ unbiased

M1 A1
B1
3
(b) $\mathrm{E}\left(a X_{1}+b X_{2}\right)=a \mu+b \mu=\mu$

$$
a+b=1
$$

M1

$$
\operatorname{Var}\left(a X_{1}+b X_{2}\right)=a^{2} \sigma^{2}+b^{2} \sigma^{2}
$$

M1 A1
$=a^{2} \sigma^{2}+(1-a)^{2} \sigma^{2}$
$=\left(2 a^{2}-2 a+1\right) \sigma^{2} \quad * *$ given $* *$
(c) Min value when $(4 a-2) \sigma^{2}=0$

M1 A1

$$
\frac{d}{d a}(\text { Var })=0, \text { all correct }
$$

$$
\begin{aligned}
& \Rightarrow 4 a-2=0 \\
& a=\frac{1}{2}, b=\frac{1}{2}
\end{aligned}
$$

A1 A1 5

1. This question proved to be the most challenging question for many candidates. Few candidates wrote down the distributions of X_{1}, X_{2} and X_{3} in part (a) and those who tried were unable to do so accurately. The Normal and Binomial distributions were commonly seen. This aside candidates were then able to progress and gain at least two marks in part (a).

In part (b) the main error was not to use their means from part (a). Even the candidates who correctly identified the Poison introduced a variety of variances including σ^{2}.

In part (c) and (d) the candidates who knew $\mathrm{E}(\bar{Y})=\mu$ and $\operatorname{Var}(\bar{Y})=\frac{\sigma^{2}}{n}$ gained full marks. In part (e) the majority of candidates used $\operatorname{Var}\left(\frac{1}{4} \bar{Y}\right)<\operatorname{Var}(\hat{\lambda})$ although it was not always clear from their working that this was the case with many writing $\operatorname{Var}\left(\frac{1}{4} \bar{Y}\right)=\operatorname{Var}(\hat{\lambda})$ and simply solving the equation.
2. This question proved to be the most challenging for many candidates. In part (a) many candidates tried to prove it was equal to $\frac{k}{2}$ and few made the concluding statement that it was unbiased.

In part (b) few candidates were able to find $a+b=2$ and hence made little progress. Those who did find this were able to gain full marks.
In part (c) a mix of both of the given methods on the mark scheme were used. If they chose the first method the majority of candidates did not prove that it was a minimum. If they chose the second they rarely completed the square correctly choosing to leave out the $\frac{k^{2}}{6}$.
3. This proved to be a good starter question and most candidates gave good solutions. A minority of candidates did not state the bias.

In part (b) many candidates did not know that the Variance of X_{2}, X_{3} etc was σ^{2} not $\frac{\sigma^{2}}{n}$.
4. This question was generally well answered. In part (b) a minority of candidates did not draw the conclusion that U is unbiased. Part (c) caused the most problems. Many did not use $\operatorname{Var}(n \bar{Y})=$ $n^{2} \operatorname{Var}(\bar{X})$ and although most had part (a) correct they did not use $\operatorname{Var}(\bar{Y})=\frac{\sigma^{2}}{m}$. These candidates demonstrated poor algebraic skills in an endeavour to get the correct answer, even though the answer was given
5. The structure and given answers helped many candidates here and those who attempted it were often able to pick up marks in at least parts (b), (d) and (g). Perhaps surprisingly part (a) proved to be the most challenging. There were many unconvincing attempts based on integrating x^{n} and then for some reason dividing by x but those who simply applied their S2 knowledge and wrote $\mathrm{E}\left(X^{n}\right)=\int_{0}^{t} x^{n} \frac{1}{t} d t$ were usually able to complete this part and often most of the question. A common error in part (c) was to assume $\operatorname{Var}(X Y)=\operatorname{Var}(X) \operatorname{Var}(Y)$ and this was perhaps the most challenging part. In part (f) the reasoning was usually sound, although the values were sometimes incorrect, and candidates who persevered to the end were often able to use the point $(2,3)$ in their estimator to answer part (g).
6. Part (a) was well done, but many candidates started with a confidence interval in part (b) that required a significant amount of manipulation and inevitably gave rise to errors. The incorrect comparison of 0.9 with the interval, rather than 0.81 was not unusual in part (c).
7. A reasonable attempt at the proofs were usually seen here, but the use of the fractional variance in part (b) was missed by many.
8. Although the notation of some of the candidates could have been better the norm for this question was full marks. This aspect of the specification was well applied to this question.
9. The candidates found this question very much to their liking and only a few of them did not gain most of the marks. Common errors were to omit the condition that a consistent estimator needs to be unbiased and to ignore the mean and the variance of the binomial distribution in parts (b) and (c).
10. The proof in part (a) was done well, but some candidates struggled with parts (b) and (c). The common error was to miss that part (a) was useful in part (b), so only 2 marks were scored. Some good solutions were seen for part (c), but weaker candidates were unable to cope with what they perceived to be 2 variables. Many attempted to solve an arbitrary quadratic equation and concluded that there were multiple possible solutions, usually involving 0 and 1.

